airflow-supervisor

Apache Airflow utilities for running long-running or always-on jobs with supervisord

Build Status codecov License PyPI

Overview

This library provides a configuration-driven way of generating supervisor configurations and airflow operators/sensors for long-running or always-on jobs. Configuration is managed by Pydantic, Hydra, and OmegaConf via the supervisor-pydantic library.

How To: Use in Airflow

airflow-supervisor can be installed in your airflow server environment and imported in your dag files. It provides two convenient top level DAG subclasses:

  • Supervisor: creates a DAG representing a local supervisor instance running on the airflow worker node (underlying task will use PythonOperator and BashOperator to communicate between airflow and supervisor)

  • SupervisorSSH: creates a DAG representing a remote supervisor instance running on another machine (underlying tasks will use SSHOperator to communicate between airflow and supervisor)

We expose DAGs composed of a variety of tasks and sensors, which are exposed as a discrete pipeline of steps:

  1. Setup supervisord configuration

  2. Start the supervisord daemon

  3. Start the supervised programs with supervisorctl

  4. Start sensors to query the programs’ state via supervisor’s XML-RPC API

  5. Evaluate and take action according to the program’s state changes

  6. Restart programs if necessary

  7. Tear down the sensors from (4)

  8. Stop the supervised programs from (3)

  9. Stop the supervisord daemon from (2)

  10. Remove configuration from (1)

This setup provides maximal configureability with a minimal requirements on the machine (for example, no requirements on an existing supervisord daemon via e.g. systemd). It also lets you hook your own tasks into any step of the process. For example, if we detect a process has died in step (5), you could configure your own task to take some custom action before/instead of the default restart of step 6.

Here is a nice overview of the DAG, with annotations for code paths and the actions taken by Supervisor:

https://raw.githubusercontent.com/airflow-laminar/airflow-supervisor/main/docs/img/overview.png

More docs and code examples coming soon!

Example Dag:

from airflow import DAG
from datetime import timedelta, datetime
from airflow_supervisor import SupervisorAirflowConfiguration, Supervisor, ProgramConfiguration


# Create supervisor configuration
cfg = SupervisorAirflowConfiguration(
    working_dir="/data/airflow/supervisor",
    config_path="/data/airflow/supervisor/supervisor.conf",
    program={
        "test": ProgramConfiguration(
            command="bash -c 'sleep 14400; exit 1'",
        )
    },
)

# Create DAG as normal
with DAG(
    dag_id="test-supervisor",
    schedule=timedelta(days=1),
    start_date=datetime(2024, 1, 1),
    catchup=False,
) as dag:

    # Link supervisor config to dag
    supervisor = Supervisor(dag=dag, cfg=cfg)

Example DAG: airflow-config

# @package _global_
_target_: airflow_config.Configuration
default_args:
  _target_: airflow_config.DefaultArgs
  retries: 0
  depends_on_past: false
all_dags:
  _target_: airflow_config.DagArgs
  start_date: "2024-01-01"
  catchup: false
extensions:
  supervisor:
    _target_: airflow_supervisor.SupervisorAirflowConfiguration
    airflow:
      _target_: airflow_supervisor.ConvenienceConfiguration
      port: "*:9091"
    working_dir: "/data/airflow/supervisor"
    config_path: "/data/airflow/supervisor/supervisor.conf"
    program:
      test:
        _target_: airflow_supervisor.ProgramConfiguration
        command: "bash -c 'sleep 14400; exit 1'"
from datetime import timedelta
from airflow_config import load_config, DAG
from airflow_supervisor import Supervisor

config = load_config(config_name="airflow")

with DAG(
    dag_id="test-supervisor",
    schedule=timedelta(days=1),
    config=config,
) as dag:
    supervisor = Supervisor(dag=dag, cfg=config.extensions["supervisor"])

Configuration

See supervisor-pydantic for reference.

  • SupervisorAirflowConfiguration: Wrapper around supervisor_pydantic.SupervisorConvenienceConfiguration, with added airflow-specific configuration

  • SupervisorSSHAirflowConfiguration: Wrapper around SupervisorAirflowConfiguration, with added parameters for airflow’s SSHOperator

  • AirflowConfiguration: Airflow-specific configuration for how the DAG and Operators should behave, including airflow_ha.HighAvailabilityOperator and PythonSensor

        classDiagram
    SupervisorConvenienceConfiguration <|-- SupervisorAirflowConfiguration
    SupervisorAirflowConfiguration <|-- SupervisorSSHAirflowConfiguration

    class SupervisorConvenienceConfiguration {
      supervisor_pydantic.SupervisorConvenienceConfiguration
    }
    SupervisorAirflowConfiguration *-- AirflowConfiguration

    class SupervisorAirflowConfiguration{
        airflow: AirflowConfiguration

        stop_on_exit: bool
        cleanup: bool
        restart_on_initial: bool
        restart_on_retrigger: bool
    }
    class SupervisorSSHAirflowConfiguration {
      command_prefix: str

      # Airflow SSHOperator Arguments
      ssh_hook: object
      ssh_conn_id: str
      remote_host: str
      conn_timeout: int
      cmd_timeout: int
      environment: dict
      get_pty: bool
      banner_timeout: float
      skip_on_exit_code: List~int~
    }
    class AirflowConfiguration {
      # PythonSensor arguments
      check_interval: timedelta
      check_timeout: timedelta

      # HighAvailabilityOperator custom args
      runtime: timedelta
      endtime: time
      maxretrigger: int
      reference_date: str
    }
    

Note

This library is built on supervisor-pydantic, which provides configuration elements for all supervisor structures, as well as self-contained tools for interacting with supervisor instances.

Note

This library was generated using copier from the Base Python Project Template repository.