```{toctree}
---
caption: ""
maxdepth: 2
hidden: true
---
docs/src/API.md
```
# airflow-ha
High Availability (HA) DAG Utility
[![Build Status](https://github.com/airflow-laminar/airflow-ha/actions/workflows/build.yml/badge.svg?branch=main&event=push)](https://github.com/airflow-laminar/airflow-ha/actions/workflows/build.yml)
[![codecov](https://codecov.io/gh/airflow-laminar/airflow-ha/branch/main/graph/badge.svg)](https://codecov.io/gh/airflow-laminar/airflow-ha)
[![License](https://img.shields.io/github/license/airflow-laminar/airflow-ha)](https://github.com/airflow-laminar/airflow-ha)
[![PyPI](https://img.shields.io/pypi/v/airflow-ha.svg)](https://pypi.python.org/pypi/airflow-ha)
## Overview
This library provides an operator called `HighAvailabilityOperator`, which inherits from `PythonSensor` and runs a user-provided `python_callable`.
The return value can trigger the following actions:
| Return | Result | Current DAGrun End State |
| :----- | :----- | :----------------------- |
| `(PASS, RETRIGGER)` | Retrigger the same DAG to run again | `pass` |
| `(PASS, STOP)` | Finish the DAG, until its next scheduled run | `pass` |
| `(FAIL, RETRIGGER)` | Retrigger the same DAG to run again | `fail` |
| `(FAIL, STOP)` | Finish the DAG, until its next scheduled run | `fail` |
| `(*, CONTINUE)` | Continue to run the Sensor | N/A |
Note: if the sensor times out, the behavior matches `(Result.PASS, Action.RETRIGGER)`.
### Example - Always On
Consider the following DAG:
```python
with DAG(
dag_id="test-high-availability",
description="Test HA Operator",
schedule=timedelta(days=1),
start_date=datetime(2024, 1, 1),
catchup=False,
):
ha = HighAvailabilityOperator(
task_id="ha",
timeout=30,
poke_interval=5,
python_callable=lambda **kwargs: choice(
(
(Result.PASS, Action.CONTINUE),
(Result.PASS, Action.RETRIGGER),
(Result.PASS, Action.STOP),
(Result.FAIL, Action.CONTINUE),
(Result.FAIL, Action.RETRIGGER),
(Result.FAIL, Action.STOP),
)
),
)
pre = PythonOperator(task_id="pre", python_callable=lambda **kwargs: "test")
pre >> ha
retrigger_fail = PythonOperator(task_id="retrigger_fail", python_callable=lambda **kwargs: "test")
ha.retrigger_fail >> retrigger_fail
stop_fail = PythonOperator(task_id="stop_fail", python_callable=lambda **kwargs: "test")
ha.stop_fail >> stop_fail
retrigger_pass = PythonOperator(task_id="retrigger_pass", python_callable=lambda **kwargs: "test")
ha.retrigger_pass >> retrigger_pass
stop_pass = PythonOperator(task_id="stop_pass", python_callable=lambda **kwargs: "test")
ha.stop_pass >> stop_pass
```
This produces a DAG with the following topology:
This DAG exhibits cool behavior.
If the check returns `CONTINUE`, the DAG will continue to run the sensor.
If the check returns `RETRIGGER` or the interval elapses, the DAG will re-trigger itself and finish.
If the check returns `STOP`, the DAG will finish and not retrigger itself.
If the check returns `PASS`, the current DAG run will end in a successful state.
If the check returns `FAIL`, the current DAG run will end in a failed state.
This allows the one to build "always-on" DAGs without having individual long blocking tasks.
This library is used to build [airflow-supervisor](https://github.com/airflow-laminar/airflow-supervisor), which uses [supervisor](http://supervisord.org) as a process-monitor while checking and restarting jobs via `airflow-ha`.
### Example - Recursive
You can also use this library to build recursive DAGs - or "Cyclic DAGs", despite the oxymoronic name.
The following code makes a DAG that triggers itself with some decrementing counter, starting with value 3:
```python
with DAG(
dag_id="test-ha-counter",
description="Test HA Countdown",
schedule=timedelta(days=1),
start_date=datetime(2024, 1, 1),
catchup=False,
):
def _get_count(**kwargs):
# The default is 3
return kwargs['dag_run'].conf.get('counter', 3) - 1
get_count = PythonOperator(task_id="get-count", python_callable=_get_count)
def _keep_counting(**kwargs):
count = kwargs["task_instance"].xcom_pull(key="return_value", task_ids="get-count")
return (Result.PASS, Action.RETRIGGER) if count > 0 else (Result.PASS, Action.STOP) if count == 0 else (Result.FAIL, Action.STOP)
keep_counting = HighAvailabilityOperator(
task_id="ha",
timeout=30,
poke_interval=5,
python_callable=_keep_counting,
pass_trigger_kwargs={"conf": '''{"counter": {{ ti.xcom_pull(key="return_value", task_ids="get-count") }}}'''},
)
get_count >> keep_counting
```
## License
This software is licensed under the Apache 2.0 license. See the [LICENSE](LICENSE) file for details.