airflow_config.DAG

class airflow_config.DAG(config: Configuration = None, **kwargs)[source]

Bases: DAG

__init__(config: Configuration = None, **kwargs)[source]

Methods

__init__([config])

add_task(task)

Add a task to the DAG.

add_tasks(tasks)

Add a list of tasks to the DAG.

bulk_sync_to_db(dags[, session])

Use airflow.models.DAG.bulk_write_to_db, this method is deprecated.

bulk_write_to_db(dags[, processor_subdir, ...])

Ensure the DagModel rows for the given dags are up-to-date in the dag table in the DB.

clear([task_ids, start_date, end_date, ...])

Clear a set of task instances associated with the current dag for a specified date range.

clear_dags(dags[, start_date, end_date, ...])

cli()

Exposes a CLI specific to this DAG.

create_dagrun(state[, execution_date, ...])

Create a dag run from this dag including the tasks associated with this dag.

date_range(start_date[, num, end_date])

deactivate_stale_dags(expiration_date[, session])

Deactivate any DAGs that were last touched by the scheduler before the expiration date.

deactivate_unknown_dags(active_dag_ids[, ...])

Given a list of known DAGs, deactivate any other DAGs that are marked as active in the ORM.

execute_callback(callbacks, context, dag_id)

Triggers the callbacks with the given context.

fetch_callback(dag, dag_run_id[, success, ...])

Fetch the appropriate callbacks depending on the value of success.

fetch_dagrun(dag_id[, execution_date, ...])

Return the dag run for a given execution date or run_id if it exists, otherwise none.

following_schedule(dttm)

Calculate the following schedule for this dag in UTC.

get_active_runs()

Return a list of dag run execution dates currently running.

get_concurrency_reached([session])

Return a boolean indicating whether the max_active_tasks limit for this DAG has been reached.

get_dagrun([execution_date, run_id, session])

get_dagruns_between(start_date, end_date[, ...])

Return the list of dag runs between start_date (inclusive) and end_date (inclusive).

get_default_view()

Allow backward compatible jinja2 templates.

get_doc_md(doc_md)

get_edge_info(upstream_task_id, ...)

Return edge information for the given pair of tasks or an empty edge if there is no information.

get_is_active([session])

Return a boolean indicating whether this DAG is active.

get_is_paused([session])

Return a boolean indicating whether this DAG is paused.

get_last_dagrun([session, ...])

get_latest_execution_date([session])

Return the latest date for which at least one dag run exists.

get_next_data_interval(dag_model)

Get the data interval of the next scheduled run.

get_num_active_runs([external_trigger, ...])

Return the number of active "running" dag runs.

get_num_task_instances(dag_id[, run_id, ...])

Return the number of task instances in the given DAG.

get_run_data_interval(run)

Get the data interval of this run.

get_run_dates(start_date[, end_date])

Return a list of dates between the interval received as parameter using this dag's schedule interval.

get_serialized_fields()

Stringified DAGs and operators contain exactly these fields.

get_task(task_id[, include_subdags])

get_task_instances([start_date, end_date, ...])

get_task_instances_before(base_date, num, *)

Get num task instances before (including) base_date.

get_template_env(*[, force_sandboxed])

Build a Jinja2 environment.

get_tree_view()

Return an ASCII tree representation of the DAG.

handle_callback(dagrun[, success, reason, ...])

Triggers on_failure_callback or on_success_callback as appropriate.

has_dag_runs([session, ...])

has_task(task_id)

has_task_group(task_group_id)

infer_automated_data_interval(logical_date)

Infer a data interval for a run against this DAG.

is_fixed_time_schedule()

Figures out if the schedule has a fixed time (e.g. 3 AM every day).

iter_dagrun_infos_between(earliest, latest, *)

Yield DagRunInfo using this DAG's timetable between given interval.

iter_invalid_owner_links()

Parse a given link, and verifies if it's a valid URL, or a 'mailto' link.

logger()

Return a logger.

next_dagrun_after_date(...)

next_dagrun_info(last_automated_dagrun, *[, ...])

Get information about the next DagRun of this dag after date_last_automated_dagrun.

normalize_schedule(dttm)

param(name[, default])

Return a DagParam object for current dag.

partial_subset(task_ids_or_regex[, ...])

Return a subset of the current dag based on regex matching one or more tasks.

pickle([session])

pickle_info()

previous_schedule(dttm)

resolve_template_files()

run([start_date, end_date, mark_success, ...])

Run the DAG.

set_dag_runs_state([state, session, ...])

set_dependency(upstream_task_id, ...)

Set dependency between two tasks that already have been added to the DAG using add_task().

set_edge_info(upstream_task_id, ...)

Set the given edge information on the DAG.

set_task_group_state(*, group_id[, ...])

Set TaskGroup to the given state and clear downstream tasks in failed or upstream_failed state.

set_task_instance_state(*, task_id[, ...])

Set the state of a TaskInstance and clear downstream tasks in failed or upstream_failed state.

sub_dag(*args, **kwargs)

Use airflow.models.DAG.partial_subset, this method is deprecated.

sync_to_db([processor_subdir, session])

Save attributes about this DAG to the DB.

test([execution_date, run_conf, ...])

Execute one single DagRun for a given DAG and execution date.

topological_sort([include_subdag_tasks])

Sorts tasks in topographical order, such that a task comes after any of its upstream dependencies.

tree_view()

Print an ASCII tree representation of the DAG.

validate()

Validate the DAG has a coherent setup.

validate_executor_field()

validate_schedule_and_params()

Validate Param values when the DAG has schedule defined.

validate_setup_teardown()

Validate that setup and teardown tasks are configured properly.

Attributes

access_control

allow_future_exec_dates

concurrency

concurrency_reached

Use airflow.models.DAG.get_concurrency_reached, this attribute is deprecated.

dag_display_name

dag_id

default_view

description

filepath

Relative file path to the DAG.

folder

Folder location of where the DAG object is instantiated.

full_filepath

Full file path to the DAG.

is_paused

Use airflow.models.DAG.get_is_paused, this attribute is deprecated.

is_subdag

latest_execution_date

Use airflow.models.DAG.get_latest_execution_date, this attribute is deprecated.

leaves

Return nodes with no children.

log

Return a logger.

max_active_tasks

normalized_schedule_interval

owner

Return list of all owners found in DAG tasks.

parent_dag

pickle_id

relative_fileloc

File location of the importable dag 'file' relative to the configured DAGs folder.

roots

Return nodes with no parents.

subdags

Return a list of the subdag objects associated to this DAG.

task

task_group

task_group_dict

task_ids

tasks

tasks_upstream_of_teardowns

teardowns

fileloc

File path that needs to be imported to load this DAG or subdag.